Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal. 2017. № 1(21). P. 49—64

 

03.00.00 BIOLOGICAL SCIENCES

UDC 573.01:595.762.12

Sukhodolskaya Raisa Anatolyevna, Candidate of Biological Sciences, Senior Researcher
Institute for Environmental and Subsoil Use, Tatarstan Academy of Sciences
Savelyev Anatoliy Aleksandrovich, Doctor of Biological Sciences, Professor
Kazan Federal University

 

SEXUAL SIZE DIMORPHISM OF GROUND BEETLE Carabus cancellatus Ill. (COLEOPTERA, CARABIDAE)

Abstract

The authors performed morphometric measurements of the beetles (with the sampling of more than 600 species), found in three zones of the area in the gradient of anthropogenic impact (cities, suburbs, rural areas) in the biotopes with various vegetation. Six traits were measured: length and width of elytra and pronotum, head length and space between eyes. Sexual size dimorphism in species studied was female-biased. To analyze size variation the reduced regression models of Type II were used. All the models show the coefficients of determination approaching to 1, which proves that the models were adequate to describe the phenomenon. Positive values of regression coefficients attest to the fact that the size change of female and male species was unidirectional. As the models constants regarding the size of Carabus cancellatus female elytra and pronotum are positive, it indicates that female species are more sensitive to environmental conditions than male ones.

Key words

Sexual size dimorphism, carabids, reduced regression models, size variation, environmental factors.

The full text of the article PDF (Russian)

 

References

1. Gelashvili D. B., Solntsev L. A., Yakimov V. N., Sukhodol’skaya R. A., Khabibullina N. R., Iudin D. I., Snegireva M. S. Fraktal‘nyi analiz vidovoi struktury karabidokompleksov urbanizirovannykh territorii (na primere g. Kazani) [Fractal analysis of the specific structure of carabids in urbanized areas (by the example of Kazan city)]. Povolzhskii ekologicheskii zhurnal — Povolzhskiy Journal of Ecology, 2011, no. 4, pp. 407—420. (In Russian)
2. Grin’ko R. A. Ekologicheskaya struktura populyatsii zhuzhelits (Coleoptera, Carabidae) zonal’nykh i intrazonal’nykh ekosistem pri raznoi stepeni ikh izolyatsii : dis. … kand. biol. nauk [Ecological structure of populations of ground beetles (Coleoptera, Carabidae) zonal and intrazonal ecosystems under varying degrees of isolation: Cand. Dis.]. N. Novgorod, 2002. 180 p. (In Russian)
3. Zherebtsov A. K., Zainulgabidinov E. R., Sukhodol’skaya R. A., Kuznetsova T. V., Khalidov A. B. Obshchaya kharakteristika soobshchestv pochvoobitayushchikh bespozvonochnykh estestvennykh fitotsenoticheskikh formatsii [General characteristics of soil invertebrate communities of phytocenotic natural formations]. Kadastr soobshchestv pochvoobitayushchikh bespozvonochnykh (mezofauna) estestvennykh ekosistem Respubliki Tatarstan [Cadastre of soil invertebrate communities (mesofauna) in natural ecosystems of the Republic of Tatarstan]. Kazan’, Kazanskii federal’nyi universitet Publ., 2014, pp. 20—128. (In Russian)
4. Minets M. L., Grichik V. V. Izmenchivost’ feneticheskikh i morfologicheskikh kharakteristik populyatsii zhuzhelitsy Carabus granulatus L. (Coleoptera, Carabidae) na territorii Belarusi [Variability of the polymorph and morphological characteristics of populations of ground beetles Carabus granulatus L. (Coleoptera, Carabidae) in Belarus]. Vestnik Belorusskogo gosudarstvennogo universiteta, Ser. 2, 2007, no. 2, pp. 69—74. (In Russian)
5. Sukhodol’skaya R. A., Eremeeva N. I. Zakonomernosti izmenchivosti razmerov i formy zhuzhelitsy Carabus aeruginosus Fischer von Waldheim, 1822 (Coleoptera, Carabidae) [Consistent patterns of size and shape variability of ground beetles Carabus aeruginosus Fischer von Waldheim, 1822 (Coleoptera, Carabidae)]. Sibirskii ekologicheskii zhurnal, 2013, no. 6, pp. 803—812. (In Russian)
6. Sukhodol’skaya R. A., Savel’ev A. A. Vliyanie ekologicheskikh faktorov na morfometricheskuyu izmenchivost’ i polovoi dimorfizm zhuzhelits (na primere Carabus cancellatus Ill.) [The impact of environmental factors on morphometric variability and sexual dimorphism of ground beetles (by the example of Carabus cancellatus Ill.)]. Prikladnaya entomologiya, 2012, vol. 3, no. 2 (8), pp. 28—38. (In Russian)
7. Sukhodol’skaya R. A., Savel’ev A. A. Vliyanie ekologicheskikh faktorov na razmernye priznaki zhuzhelitsy Carabus granulatus L. (Coleoptera, Carabidae) [The impact of environmental factors on the dimensional features of ground beetles Carabus granulatus L. (Coleoptera, Carabidae)]. Ekologiya, 2014, vol. 5, pp. 369—375. (In Russian)
8. Shitikov V. K., Rozenberg G. S. Randomizatsiya i butstrep: statisticheskii analiz v biologii i ekologii s ispol’zovaniem R [Randomization and Bootstrap: statistical analysis in biology and ecology, using R.]. Tol’yatti, Kassandra Publ., 2013. 314 p. (In Russian)
9. Abouheif E., Fairbairn D. J. A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule. American Naturalist, 1997, vol. 149, pp. 540—562.
10. Alibert P., Moureau B., Dommergues J.-L., David B. Differentiation at a microgeographical scale within two species of ground beetle, Carabus auronitens and C. nemoralis (Coleoptera, Carabidae): a geometrical morphometric approach. Zoologica Scripta, 2001, vol. 30, pp. 299—311.
11. Andersson M. Sexual selection. N. J., Princeton University Press, 1994. 221 p.
12. Arak A. Sexual dimorphism in body size: a model and a test. Evolution, 1988, vol. 42, pp. 820—825.
13. Arnqvist G., Rowe L. Sexual Conflict. Princeton University Press, 2013. 352 p.
14. Badyaev A. V. Growing apart: an ontogenetic perspective on the evolution of sexual dimorphism. Trends of Ecology and Evolution, 2002, vol. 17, pp. 369—378.
15. Benitez H. A., Vidal M., Briones R., Jerez V. Sexual Dimorphism and Morphological Variation in Populations of Ceroglossus chilensis (Eschscholtz, 1829) (Coleoptera: Carabidae). Journal of the Entomological Research Society, 2010, vol. 12 (2), pp. 87—95.
16. Benitez H. A., Sanzana M.-R., Jerez V., Parra L. E., Hernandez C. E., Canales-Aguirre C. B. Sexual shape and size dimorphism on carabid beetles of the genus Ceroglossus, is the geometric body size similar between sexes due to sex ratio? Zoological Sciences, 2013, vol. 30 (4), pp. 289— 295.
17. Berger D., Walters R., Gotthard K. What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology, 2008, vol. 22, is. 3, pp. 523—529.
18. Blanckenhorn W. U. Case studies of differential — equilibrium hypothesis of sexual size dimorphism in two dung fly species. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. New York, Oxford University Press, 2004, pp. 106—114.
19. Blanckenhorn W. U. Divergent juvenile growth and development mediated by food limitation and foraging in the water strider Aquarius remigis (Heteroptera: Gerridae). Journal of Zoology, 2006, vol. 268, pp. 17—23.
20. Blanckenhorn W. U., Dixon A. F. G., Fairnbairn D. J., Foellmer M. W., Gilbert P. Proximate causes of Rench’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? American Naturalist, 2007, vol. 169, pp. 245—257.
21. Blanckenhorn W. U., Stillwell R. C., Young K. A., Fox C. W., Ashton K. G. When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude? Evolution, 2006, vol. 60, pp. 2004—2011.
22. Bonduriansky R. The evolution of condition-dependent sexual dimorphism. American Naturalist, 2007, vol. 169, pp. 9—19.
23. Bonduriansky R., Chenoweth S. F. Intralocus sexual conflict. Trends in Ecology and Evolution, 2009, vol. 24, no. 5, pp. 280—288.
24. Clutton-Brock T. H., Harvey P. H., Rudder B. Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature, 1977, vol. 269, pp. 797—800.
25. Etile E., Despland E. Developmental variation in the forest tent caterpillar: life history consequences of a threshold size for pupation. Oikos, 2008, vol. 117, pp. 135—143.
26. Fairbairn D. J. Allometry for sexual dimorphism: pattern and process in the evolution of body size in males and females. Annual Review of Ecological Systems, 1997, vol. 28, pp. 659—687.
27. Fairbairn D. J. Allometry for sexual size dimorphism: testing two hypotheses for Rensch’s rule in the water strider Aquarius remiges. American Naturalist, 2005, vol. 166, pp. S69—S84.
28. Fairbairn D. J., Blanckenhorn W. U., Székely T., eds. Sex, Size and Gender Roles. New York, Oxford University Press, 2007. 266 p.
29. Fairbairn D. J., Preziosi R. F. Sexual selection and the evolution of allometry for sexual size dimorphism. American Naturalist, 1994, vol. 144, pp. 101—118.
30. Frýdlová P., Frynta D. A test of Rensch’s rule in varanid lizards. Biological Journal of the Linnean Society, 2010, vol. 100, is. 2, pp. 293—306.
31. Gibert P., Capy P., Imasheva A., Moreteau B., Morin J. P., Pétavy G., David J. R. Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity. Genetica, 2004, vol. 120, pp. 165—179.
32. Gutierres D., Menendez R. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera, Caraboidea) in relation to dispersal ability. Journal of Biogeography, 1997, vol. 24, pp. 903—914.
33. Herczeg G., Gonda A., Merila J. Rensch’ rule inverted-female-driven gigantism in nine-spined stickleback Pungitius pungitius. Journal of Animal Ecology, 2010, vol. 79, pp. 581—588.
34. Herler J., Kerschbaumer M., Mitteroecker P., Postl L., Sturmbauer C. Sexual dimorphism and population divergence in the Lake Tanganyika cichlid fish genus Tropheus. Frontiers in Zoology, 2010, vol. 7, pp. 4.
35. Kingsolver J. G., Izem R., Ragland G. J. Plasticity of Size and Growth in Fluctuating Thermal Environments: Comparing Reaction Norms and Performance Curves. Integrative and Comparative Biology, 2004, vol. 44, pp. 450—460.
36. Koivula M. J. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys, 2011, vol. 100, pp. 287—317.
37. Laparie M., Lebouvier M., Lalouette L., Renault D. Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island. Biological Invasions, 2010, vol. 12, is. 10, pp. 3405—3417.
38. Legendre L., Legendre P. Numerical ecology. Amsterdam, Elsevier Science, 1998. 853 p.
39. Le Polák J., Frynta D. Patterns of sexual size dimorphism in cattle breeds support Rensch’s rule. Evolutionary Ecology, 2010, vol. 24, pp. 1255—1266.
40. Rainio J., Niemelä J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation, 2003, vol. 12, pp. 487—506.
41. Rensch, B. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonner zoologische Beiträge, 1950, Bd. 1, ss. 58—69.
42. Rice W. R., Chippindale A. K. The evolution of hybrid infertility: perpetual coevolution between gender-specific and sexually antagonistic genes. Genetica, 2002, vol. 116, pp. 179—188.
43. Roff D. A. Evolutionary Quantitative Genetics. New York, Chapman & Hall., 1997. 345 p.
44. Rykken J. J., Capen D. E., Mahabir S. P. Ground beetles as indicators of land type diversity in the Green Mountains of Vermont. Conservation Biology, 1997, vol. 11, pp. 522—530.
45. Serrano-Eneses M. A., Córdoba-aguilar A., Azpilicueta-Amorín M., González-soriano E., Székely T. Sexual selection, sexual size dimorphism and Rensch’ rule in Odonata. Journal of Evolutionary Biology, 2008, vol. 21, pp. 1259—1273.
46. Smith R. J., Cheverud J. M. Scaling of sexual dimorphism in body mass: a phylogenetic analysis of Rensch’s rule in primates. International Journal of Primatology, 2002, vol. 23, pp. 1095—1135.
47. Stillwell R. C., Blanckenhorn W. U., Teder T., Davidowitz G., Fox C. W. Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology to Evolution. Annual Review of Entomology, 2010, vol. 55, pp. 227—245.
48. Stillwell R. C., Fox C. W. Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia, 2007, vol. 153, pp. 273—280.
49. Stillwell R. C., Fox C. W. Geographic variation of body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity. Oikos, 2009, vol. 118, pp. 703—712.
50. Sukhodolskaya R. A. Intraspecific body size variation in Ground Beetles (Coleoptera, Carabidae) in urban-suburban-rural-natural gradient. Acta Biologica Universitatis Daugavpiliensis, 2013, vol. 13, is. 1, pp. 121—128.
51. Sukhodolskaya R. A. Variation in Body Size and Body Shape in Ground Beetle Pterostichus melanarius Ill. (Coleoptera, Carabidae). Journal of Agri-Food and Applied Sciences (JAAS), 2014, vol. 2, is. 7, pp. 196—205.
52. Sustek Z. Changes in body size structure of Carabid communities (Coleoptera, Carabidae) among an urbanization gradient. Biologia (Bratislava), 1987, vol. 42, is. 2, pp. 145—156.
53. Szyszko J. State of Carabidae (Col.) fauna in fresh pine forest and tentative valorization of this environ-ment. Warsaw, Poland, Warsaw Agricultural University Press, 1983. 80 p.
54. Tammaru T., Esperk K. T., Castellanos I. No evidence for costs of being large in females of Orgyia spp. (Lepidoptera, Lymantriidae): larger is always better. Oecologia, 2002, vol. 133, pp. 430—438.
55. Teder T., Tammaru T. Sexual Size Dimorphism within species increases with body size in insects. Oikos, 2005, vol. 108, pp. 321—334.
56. Tubaro P. L., Bertelli S. Female-biased sexual size dimorphism in tinamous, a comparative test fails to support Rensch’s rule. Biological Journal of the Linnean Society, 2003, vol. 80, pp. 519—527.
57. Venn S. Morphological responses to disturbance in wing-polymorphic carabid species Coleoptera: Carabidae) of managed urban grasslands. Baltic Journal of Coleopterology, 2007, vol. 7 (1), pp. 51—59.
58. Webb T. J., Freckleton R. P. Only half right: species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLOS ONE, 2007, is. 9. URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000897.
59. Wu H., Jiang T., Huang X., Lin H., Wang H. A Test of Rensch’s Rule in Greater Horseshoe Bat (Rhinolophus ferrumequinum) with Female-Biased Sexual Size Dimorphism. PLOS ONE, 2014, vol. 9, is. 1. URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086085