Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal. 2019. № 4 (32). P. 257—284
13.00.00 PEDAGOGIC SCIENCES
UDC 372.851
Klekovkin Gennady Anatolyevich, Candidate of Physical and Mathematical Sciences, Associate Professor
Samara branch of Moscow City Pedagogical University
USING THE GeoGebra INTERACTIVE MATHEMATICAL SYSTEM IN TEACHING DIFFERENTIAL GEOMETRY. SPATIAL CURVES
Abstract
The specific features of the upcoming digitalization of mathematical education at school and university will be largely associated with the use of visualization of mathematical objects and automation of numerical and symbolic calculations (dynamic geometry systems and computer mathematics systems) in the learning process. Therefore, the development of skills in practical application of these tools of mathematical activities in solving problems from various branches of mathematics should become one of the key areas of reforming the training of future teachers and teachers of mathematics. A number of authors have used specific examples to note that even systems of dynamic geometry, originally created to electronically support the process of teaching geometry in high school, can be quite effectively used when teaching various sections of university geometry course. However, the instrumental capabilities of such systems and the possible trends of their implementation in the educational process have not yet been deeply and comprehensively studied. So, for example, the possibility and feasibility of using dynamic geometry systems in teaching differential geometry has not been studied. The article explores the capabilities of the interactive mathematical system Geo-Gebra tools, which may be in demand when teaching differential geometry to future teachers of mathematics. Based on the analysis, the directions of introducing this system into the educational process in the study of spatial curves and their properties are highlighted. In particular, a great deal of attention is paid to the creation of various types of interactive dynamic models and their application in teaching.
Key words
Interactive mathematical system GeoGebra, differential geometry, spatial curve, teaching geometry.
1. Atanasyan L. S., Bazylev V. T. Geometriya: ucheb. posobie dlya studentov fiz.-mat. fak. ped. in-tov: v 2 ch. [Geometry. A textbook for students of physics and mathematics at pedagogical institutes. In 2 parts]. Part 2. Moscow, Prosveshchenie Publ., 1987. 352 p. (In Russian)
2. Bezumova O. L., Ovchinnikova R. P., Troitskaya O. N., Troitskii A. G., Forkunova L. V., Shabanova M. V., Shirikova T. S., Tomilova O. M. Obuchenie geometrii s ispol’zovaniem vozmozhnostei GeoGebra [Learning geometry using the capabilities of GeoGebra]. Arkhangelsk, KIRA Publ., 2011. 140 p. (In Russian)
3. Bukusheva A. V. Issledovanie krivykh i poverkhnostei v sisteme Mathematica [Study of curves and surfaces in the system “Mathematics”]. Saratov, 2014. 55 p. (In Russian)
4. Ziatdinov R. A. Geometricheskoe modelirovanie i reshenie zadach proektivnoi geometrii v sisteme GeoGebra [Geometric modeling and solution to problems of projective geometry in the GeoGebra system]. Molodezh’ i sovremennye informatsionnye tekhnologii: materialy konf. [Youth and modern information technologies. Proceed. of the conference]. Tomsk, Tomsk. politekh. un-t Publ., 2010, pp. 168—170. (In Russian)
5. Ignat’ev Yu. G., Samigullina A. R. Sozdanie biblioteki protsedur v differentsial’noi geometrii [The establishment of library procedures in differential geometry]. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya ITO Povolzh’e 2007. Rossiiskii nauchnyi seminar “Metody informatsionnykh tekhnologii, matematicheskogo modelirovaniya i komp’yuternoi matematiki v fundamental’nykh i prikladnykh nauchnykh issledovaniyakh”: materialy konf. i tr. seminara [International scientific-practical conference ITO Volga region 2007. Russian scientific seminar “Methods of information technology, mathematical modeling and computer mathematics in fundamental and applied research”: conf. and workshop proceedings]. Kazan, Tatarskii gos. gumanit.-ped. un-t, Foliant Publ., 2007, pp. 112—116. (In Russian)
6. Kapustina T. V. Natural’nye uravneniya krivykh v srede Mathematica [Natural equations of curves in “Mathematics” environment]. Trudy VI Kolmogorovskikh chtenii [Proceedings of VI Kolmogorov readings]. Yaroslavl, YaGPU Publ., 2008, pp. 236—241. (In Russian)
7. Kapustina T. V. Programmirovanie opornykh zadach teorii poverkhnostei v srede Mathematica [Programming reference problems in the theory of surfaces in Mathematics environment]. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya ITO Povolzh’e 2007. Rossiiskii nauchnyi seminar “Metody informatsionnykh tekhnologii, matematicheskogo modelirovaniya i komp’yuternoi matematiki v fundamental’nykh i prikladnykh nauchnykh issledovaniyakh”: materialy konf. i tr. seminara [International scientific-practical conference ITO Volga region 2007. Russian scientific seminar “Methods of information technology, mathematical modeling and computer mathematics in fundamental and applied research”: conf. and workshop proceedings]. Kazan, Tatarskii gos. gumanit.-ped. un-t, Foliant Publ., 2007, pp. 381—386. (In Russian)
8. Kuz’mina I. A. Differentsial’naya geometriya. Issledovanie prostranstvennykh krivykh s pomoshch’yu paketa Mathematica [Differential geometry. Study of spatial curves with Mathematics software package]. Kazan, Kazanskii gos. un-t Publ., 2007. 32 p. (In Russian)
9. Larin S. V. Komp’yuternaya animatsiya v srede GeoGebra na urokakh matematiki [Computer animation in the GeoGebra system in mathematics lessons]. Rostov-na-Donu, Legion Publ., 2015. 192 p. (In Russian)
10. Norden A. P. Kratkii kurs differentsial’noi geometrii. 2-e izd. [A short course of differential geometry. 2nd ed.]. Moscow, Fizmatgiz Publ., 1958. 244 p. (In Russian)
11. Ovsyannikova T. L. Ispol’zovanie programmy GeoGebra pri obuchenii geometrii budushchikh uchitelei matematiki [The use of GeoGebra in teaching geometry to future mathematics teachers]. Mir pedagogiki i psikhologii: mezhdunar. nauch.-prakt. zhurnal, 2018, no. 11 (28), pp. 92—99. (In Russian)
12. Rashevskii P. K. Kurs differentsial’noi geometrii [Course of differential geometry]. Moscow, URSS Publ., 2014. 432 p. (In Russian)
13. Romakina L. N., Kharchenko A. A., Kharchenko N. A. Geometricheskie postroeniya na ideal’noi oblasti ploskosti Lobachevskogo [Geometric constructions on the ideal region of the Lobachevsky plane]. N. I. Lobachevskii i matematicheskoe obrazovanie v Rossii: materialy Mezhdunar. foruma po matematicheskomu obrazovaniyu, 18—22 okt. 2017 g. (XXXVI Mezhdunar. nauch. seminar prepodavatelei matematiki i informatiki un-tov i ped. vuzov) [N. I. Lobachevsky and mathematical education in Russia. Proceed. of the Internat. forum on mathematical education, October 18—22, 2017 (XXXVI Internat. sci. seminar of mathematics and informatics teachers of universities and high pedagogical educational institutions)]. Kazan, Kazan. un-t Publ., 2017, pp. 114—118. (In Russian)
14. Savelov A. A. Ploskie krivye: Sistematika, svoistva, primeneniya. Spravochnoe rukovodstvo [Flat curves: Systematics, properties, applications. Reference guide]. Moscow, Knizhnyi dom “LIBROKOM” Publ., 2014. 296 p. (In Russian)
15. Ushakov A. V. Ispol’zovanie programmy GeoGebra dlya vizualizatsii svoistv krivykh vtorogo poryadka [Use of GeoGebra program for visualizing properties of second order curves]. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal — International Research Journal, 2017, no. 4-3 (58), pp. 63—67. (In Russian)
16. Shabalina M. R. Primenenie komp’yuternoi sredy pri issledovanii poverkhnostei vtorogo poryadka metodom parallel’nykh sechenii [Application of computer environment in the study of second-order surfaces by the method of parallel sections]. Matematicheskii vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona: periodicheskii mezhvuz. sbornik nauch.-metod. rabot [Mathematical Bulletin of Pedagogical Universities and Universities of the Volga-Vyatka region: interuniversity periodic collection of sci.-method. works]. Kirov, Nauch. izd-vo VyatGU Publ., 2018, is. 20, pp. 328—334. (In Russian)
17. Yastrebov A. V., Kosheleva L. Yu. O sisteme komp’yuternykh instrumentov dlya izucheniya geometrii Lobachevskogo [On the system of computer tools for studying Lobachevsky geometry]. Klassicheskaya i sovremennaya geometriya: materialy mezhdunarodnoi konferentsii, posvyashchennoi 100-letiyu so dnya rozhdeniya V. T. Bazyleva [Classical and modern geometry. Proceed. of an internat. conf. dedicated to the 100th birthday of V. T. Bazylev]. Moscow, MPGU Publ., 2019, p. 152—153. (In Russian)
18. GeoGebra. Available at: http://www.geogebra.org. Accessed 09.02.2019.
Bibliography link to this article:
Klekovkin G. A. Using the GeoGebra interactive mathematical system in teaching differential geometry. Spatial curves. Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal, 2019, no. 4 (32), pp. 257—284. DOI: https://doi.org/10.32516/2303-9922.2019.32.19.