Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal. 2020. № 4(36). P. 169—183
03.00.00 BIOLOGICAL SCIENCES
UDC 574.587:594.32
Mikhailov Roman Anatolievich, Candidate of Biological Sciences
Researcher Institute of Ecology of the Volga River Basin of the Russian Academy of Sciences — Branch of Samara Federal Research Scientific Center of the Russian Academy of Sciences
DISTRIBUTION OF THE PULMONATA MOLLUSC Lymnaea (Lymnaea) stagnalis (MOLLUSCA: GASTROPODA) IN THE SAMARA RIVER (THE SARATOV RESERVOIR BASIN)
Abstract
The results of the study of L. (L.) stagnalis in the Samara River made it possible to establish the typical distribution of the species in different parts of the watercourse. The highest occurrence was recorded in the lower reaches of the river, which is due to the low speed of the current and the presence of thickets of higher aquatic vegetation. The mollusk prefers to settle in biotopes in thickets of Typha angustifolia L. and Potamogeton perfoliatus L. The maximum abundance was recorded in a small reservoir of the regulated section of the river, and the highest biomass values were noted in the backwater zone of the Saratov reservoir. The most significant environmental factors affecting the quantitative indicators of the mollusk in the Samara River are the water temperature, the area of overgrowth with macrophytes and the speed of the current.
Key words
Species distribution, Gastropoda, Lymnaea stagnalis, river, abiotic and biotic factors.
1. Alimov A. F. Funktsional’naya ekologiya presnovodnykh dvustvorchatykh mollyuskov [Functional ecology of freshwater bivalve molluscs]. Leningrad, Nauka Publ., 1981. 248 p. (In Russian)
2. Antonov P. I. Bioinvaziinye organizmy v vodoemakh Srednei Volgi [Bioinvasive organisms in reservoirs of the Middle Volga]. Samarskaya Luka, 2008, vol. 17, no. 3 (25), pp. 500—517. (In Russian)
3. Berezkina G. V., Starobogatov Ya. I. Ekologiya razmnozheniya i kladki yaits presnovodnykh legochnykh mollyuskov [Ecology of reproduction and egg laying of freshwater lung molluscs]. Leningrad, Zool. in-t Publ., 1988. 307 p. (Tr. Zool. in-ta, AN SSSR. Vol. 174). (In Russian)
4. Golovatyuk L. V., Shitikov V. K., Zinchenko T. D. Otsenka zonal’nogo raspredeleniya vidov donnykh soobshchestv ravninnykh rek basseina Srednei i Nizhnei Volgi [Estimation of the zonal distribution of species of the bottom communities in rivers of the Middle and Lower Volga basin]. Povolzhskii ekologicheskii zhurnal — Povolzhskiy Journal of Ecology, 2017, no. 4, pp. 335—345. DOI: 10.18500/1684-7318-2017-4-335-345. (In Russian)
5. Golubaya kniga Samarskoi oblasti: Redkie i okhranyaemye gidrobiotsenozy [The Blue Book of the Samara region: rare and protected hydrobiocenoses]. Samara, SamNTs RAN Publ., 2007. 200 p. (In Russian)
6. Zhadin V. I. Mollyuski presnykh i solonovatykh vod SSSR [Molluscs of fresh and brackish waters of the USSR]. Moscow, Leningrad, AN SSSR Publ., 1952. 376 p. (In Russian)
7. Zinchenko T. D. Khironomidy poverkhnostnykh vod basseina Srednei i Nizhnei Volgi (Samarskaya oblast’): Ekologo-faunisticheskii obzor [Chironomids of surface waters of the middle and Lower Volga basin (Samara region): ecological and faunistic review]. Tolyatti, IEVB RAN Publ., 2002. 174 p. (In Russian)
8. Zinchenko T. D. Ekologo-faunisticheskaya kharakteristika khironomid (Diptera, Chironomidae) malykh rek basseina Srednei i Nizhnei Volgi (Atlas) [Ecological and faunal characteristics of chironomids (Diptera, Chironomidae) of small rivers of the Middle and Lower Volga basin (Atlas)]. Tolyatti, Kassandra Publ., 2011.
258 p. (In Russian)
9. Zinchenko T. D., Promakhova E. V., Golovatyuk L. V., Abrosimova E. V., Popchenko T. V., Shitikov V. K. Ekologicheskaya kharakteristika loticheskoi sistemy na primere malykh rek Volzhskogo basseina: metodologicheskie podkhody issledovanii [Environmental characteristics of the lothic system on the example of small rivers of the Volga river basin: methodological approaches]. Izvestiya Samarskogo nauchnogo tsentra RAN — Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2018, vol. 20, no. 5 (2), pp. 167—179. (In Russian)
10. Kiyashko P. V., Soldatenko E. V., Vinarskii M. V. Klass Bryukhonogie mollyuski [Class Gastropods]. Opredelitel’ zooplanktona i zoobentosa presnykh vod Evropeiskoi Rossii. T. 2. Zoobentos [Key to zooplankton and zoobenthos of fresh waters of European Russia. Vol. 2. Zoobenthos]. Moscow, St. Petersburg, T-vo nauch. izdanii KMK Publ., 2016, pp. 335—438. (In Russian)
11. Kruglov N. D. Mollyuski semeistva prudovikov (Lymnaeidae, Gastropoda, Pulmonata) Evropy i Severnoi Azii [Molluscs of the pond snail family (Lymnaeidae, Gastropoda, Pulmonata) of Europe and North Asia]. Smolensk, SGPU Publ., 2005. 507 p. (In Russian)
12. Krylov A. V. Zooplankton ravninnykh malykh rek [Zooplankton of lowland small rivers]. Moscow, Nauka Publ., 2005. 263 p. (In Russian)
13. Matveev V. I., Solov’eva V. V., Saksonov S. V. Ekologiya vodnykh rastenii. 2-e izd., ispr. i dop. [Ecology of aquatic plants. 2nd ed., rev. and add.]. Samara, Samarskii NTs RAN Publ., 2005. 282 p. (In Russian)
14. Mikhailov V. N. Gidrologicheskie protsessy v ust’yakh rek [Hydrological processes at river mouths]. Moscow, GEOS Publ., 1997. 176 p. (In Russian)
15. Mikhailov R. A. Vidovoi sostav presnovodnykh mollyuskov vodoemov Srednego i Nizhnego Povolzh’ya [Species composition of freshwater mollusсs of the Middle and Lower Volga reservoirs]. Izvestiya Samarskogo nauchnogo tsentra RAN — Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2014, vol. 16, no. 5 (5), pp. 1765—1772. (In Russian)
16. Mikhailov R. A. Ekologo-faunisticheskii analiz struktury soobshchestva mollyuskov reki Samara [Ecological and faunistic analysis of the molluscs community structure of the Samara river]. Voda: khimiya i ekologiya, 2015, no. 1, pp. 82—90. (In Russian)
17. Mikhailov R. A. Malakofauna raznotipnykh vodoemov i vodotokov Samarskoi oblasti [Malacofauna of different types of water bodies and watercourses of the Samara region]. Tolyatti, Kassandra Publ., 2017. 103 p. (In Russian)
18. Nauchno-prikladnoi spravochnik: Osnovnye gidrologicheskie kharakteristiki rek basseina Nizhnei Volgi [Scientific and Applied Handbook: Basic hydrological characteristics of rivers in the Lower Volga basin]. Livny, 2015. 129 p. (In Russian)
19. Rukovodstvo po gidrobiologicheskomu monitoringu presnovodnykh ekosistem [Guidelines for hydrobiological monitoring of freshwater ecosystems]. St. Petersburg, Gidrometeoizdat Publ., 1992. 318 p. (In Russian)
20. Starobogatov Ya. I. Biologicheskoe raznoobrazie mollyuskov kontinental’nykh vodoemov i sostoyanie ego izuchennosti v Rossiiskoi Federatsii i sosednikh gosudarstvakh [Biological diversity of molluscs of continental water bodies and the state of its knowledge in the Russian Federation and neighbouring states]. Bioraznoobrazie: Stepen’ taksonomicheskoi izuchennosti [Biodiversity: Degree of taxonomic knowledge]. Moscow, Nauka Publ., 1994, pp. 60—64. (In Russian)
21. Starobogatov Ya. I., Prozorova L. A., Bogatov V. V., Saenko E. M. Mollyuski. Opredelitel’ presnovodnykh bespozvonochnykh Rossii i sopredel’nykh territorii. T. 6 [Molluscs. Key to freshwater invertebrates of Russia and adjacent lands. Vol. 6]. St. Petersburg, Nauka Publ., 2004. 528 p. (In Russian)
22. Khokhutkin I. M., Vinarskii M. V., Grebennikov M. E. Mollyuski Urala i prilegayushchikh territorii. Semeistvo Prudovikovye Lymnaeidae (Gastropoda, Pulmonata, Lymnaeiformes). Ch. 1 [Molluscs of the Urals and adjacent territories. Family Pond snails Lymnaeidae (Gastropoda, Pulmonata, Lymnaeiformes). Part 1]. Yekaterinburg, Goshchitskii Publ., 2009. 162 p. (In Russian)
23. Shitikov V. K., Rozenberg G. S., Zinchenko T. D. Kolichestvennaya gidroekologiya: metody sistemnoi identifikatsii [Quantitative hydroecology: methods of systemic identification]. Tolyatti, IEVB RAN Publ., 2003. 463 p. (In Russian)
24. Akerland G. Oxygen consumption of the ampullariid snail Marisa cormuarietis L. in relation to body weight and temperature. Oikos, 1969, vol. 20, pp. 529—533. DOI: 10.1016/0300-9629(74)90479-4.
25. Allan J. D., Castillo M. M. Stream Ecology: Structure and Function of Running Waters. 2nd ed. Dordrecht, Springer, 2007. 436 p.
26. Briers R. Range size and environmental calcium requirements of British freshwater gastropods. Global Ecology and Biogeography, 2003, vol. 12, no. 1, pp. 47—51. DOI: 10.1046/j.1466-822X.2003.00316.x.
27. Brix K., Esbaugh A., Grosell M. The toxicity and physiological effects of copper on the freshwater pulmonate snail, Lymnaea stagnalis. Comparative Biochemistry and Physiology, 2011, pp. 261—267. DOI: 10.1016/j.cbpc.2011.06.004.
28. Berg K., Lumbye J., Ockelmann K. W. Seasonal and experimental variations of the oxygen consumption of the limpet Ancylus fluviatilis (O. F. Muller). Journal of Experimental Biology, 1957, vol. 35, pp. 43—73.
29. Brönmark C., Vermaat J. E. Complex fish-snail-epiphyton interactions and their effects on submerged freshwater macrophytes. The structuring role of submerged macrophytes in lakes. E. Jeppesen, M. Söndergaard, M. Söndergaard, & K. Christoffersen (eds.). New York, Springer Verlag, 1998, pp. 47—68.
30. Brown K. M. Temporal and spatial patterns of abundance in the gastropod assemblage of a macrophyte bed. American Malacological Bulletin, 1997, vol. 14, pp. 27—33.
31. Calow P. Gastropod associations within Malham Tam, Yorkshire. Freshwater Biology, 1973, vol. 3, pp. 521—534. DOI: 10.1111/j.1365-2427.1973.tb00074.x.
32. Cañedo-Argüelles M., Rieradevall M. Early succession of the macroinvertebrate community in a shallow lake: Response to changes in the habitat condition. Limnologica, 2011, vol. 41, pp. 363—370. DOI: 10.1016/j.limno.2011.04.001.
33. Camargo J. A., Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 2006, vol. 32, pp. 831—849. DOI: 10.1016/j.envint.2006.05.002.
34. Cardona L. Trophic cascades uncoupled in a coastal marsh ecosystem. Biological Invasions, 2006, vol. 8, pp. 835—842. DOI: 10.1007/s10530-005-0420-0.
35. Diehl S., Kornijów R. The influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. The structuring role of submerged macrophytes in lakes. E. Jeppesen, M. Söndergaard, M. Söndergaard, & K. Christoffersen (eds.). New York, Springer Verlag, 1998, pp. 24—46.
36. Gallardo B., Garcia M., Cabezas A., Gonzalez E., Gonzalez M., Ciancarelli C., Comin F. A. Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquatic Sciences, 2008, vol. 70, pp. 248—258.
37. Greenway P. Calcium regulation in the freshwater mollusc, Limnaea stagnalis (L.) (Gastropoda: Pulmonata). I. The effect of internal and external calcium concentration. Journal of Experimental Biology, 1971, vol. 54 (1), pp. 199—314.
38. Herbst D. B., Michael B., Lusardi R. A. Low specific conductivity limits growth and survival of the New Zealand mud snail from the Upper Owens River, California. Western North American Naturalist, 2008, vol. 68, pp. 324—333. DOI: 10.3398/1527-0904(2008)68[324:LSCLGA]2.0.CO;2.
39. Hubendick B. Aspects on the diversity of the fresh-water fauna. Oikos, 1962, vol. 13, pp. 249—261. DOI: 10.2307/3565088.
40. Huebner J. D. The effect of body size and temperature on the respiration of Polinices duplicatus. Comparative Biochemistry and Physiology. Part A: Physiology, 1973, vol. 44, no. 4, pp. 1185—1197. DOI: 10.1016/0300-9629(73)90258-2.
41. Humphries P., Baldwin S. Drought and aquatic ecosystems: An introduction. Freshwater Biology, 2003, vol. 48, no. 7, pp. 1141—1146. DOI: 10.1046/j.1365-2427.2003.01092.x.
42. Jobin W., Ippen A. Ecological design of irrigation canals for snail control. Science, 1964, vol. 145, no. 3638, pp. 1324—1326. DOI: 10.1126/science.145.3638.1324.
43. Kiviat E. Ecosystem services of Phragmites in North America with emphasis on habitat functions. AoB Plants, 2013, vol. 5, pp. 1—29. DOI: 10.1093/aobpla/plt008.
44. Legendre P., Legendre L. Numerical Ecology. Amsterdam, Elsevier Sci. BV, 2012. 1006 p.
45. Lewin I. Mollusc communities of lowland rivers and oxbow lakes in agricultural areas with anthropogenically elevated nutrient concentration. Folia Malacologica, 2014, vol. 22, no. 2, pp. 87—159. DOI: 10.12657/folmal.022.012.
46. Lodge D. M., Brown K. M., Klosiewski S. P., Stein R. A., Corich A. P., Leathers B. K., Bronmark C. Distribution of freshwater snails: spatial scale and the relative importance of physicochemical and biotic factors. American Malacological Bulletin, 1987, vol. 5, pp. 73—84.
47. Lytle D. A., Poff N. L. Adaptation to natural flow regime. Trends in Ecology and Evolution, 2004, vol. 19, pp. 1186—1198. DOI: 10.1016/j.tree.2003.10.002.
48. Masin C. F. Respiration rates and population metabolism of woodland snails. Oceologia, 1971, vol. 7, pp. 80—94. DOI: 10.1007/BF00346295.
49. Mažuran N., Hršak V., Tomić M., Papeš D. Effects of CaCl2 and CaBr2 on the fecundity of Planorbarius corneus L. Chemosphere, 1999, vol. 38, no. 10, pp. 2345—2355.
50. Meyer W., Turner B. Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 1992, vol. 23, no. 1, pp. 39—61.
51. Moore I. J. Effects of water currents on fresh-water snails Stagnicola palustris and Physa propinqua. Ecology, 1964, vol. 45, no. 3, pp. 558—564. DOI: 10.2307/1936108.
52. Mouthon J. Molluscs and biodegradable pollution in rivers: studies into the limiting values of 11 physico-chemical variables. Hydrobiologia, 1996, vol. 319, pp. 57—63. DOI: 10.1007/BF00020971.
53. Packer J. G., Meyerson L. A., Skálová H., Pyšek P., Kueffer C. Biological flora of the British isles: Phragmites australis. Journal of Ecology, 2017, vol. 105, no. 4, pp. 1123—1162. DOI: 10.1111/1365-2745.12797.
54. Parr L. B., Mason C. F. Long-term trends in water quality and their impact on macroinvertebrate assemblages in eutrophic lowland rivers. Water Research, 2003, vol. 37, pp. 2969—2979.
55. Probst M., Berenzen N., Lentzen-Godding A., Schulz R., Liess M. Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level. Ecotoxicology and Environmental Safety, 2005, vol. 60, pp. 140—146. DOI: 10.1016/j.ecoenv.2004.04.003.
56. Pip E., Stewart J. M. The dynamics of two aquatic plant-snail associations. Canadian Journal of Zoology, 1976, vol. 54, pp. 1192—1205. DOI: 10.1139/z76-136.
57. Pip E. A survey of the ecology and composition of submerged aquatic snail-plant communities. Canadian Journal of Zoology, 1978, vol. 56, pp. 2263—2279.
58. Russel Hunter W. Annual variations in growth and density in natural populations of freshwater snails in the West of Scotland. Proceedings of the Zoological Society of London, 1961, vol. 136, no. 2, pp. 219—253. DOI: 10.1111/j.1469-7998.1961.tb06175.x.
59. Sahin S. K., Yildirim M. Z. The Mollusk Fauna of Lake Sapanca (Turkey: Marmara) and Some Physico-Chemical Parameters of Their Abundance. Turkish Journal of Zoology, 2007, vol. 31, pp. 47—52.
60. Sidorov V. A. Effect of acute temperature change on lung respiration of the mollusc Lymnaea stagnalis. Journal of Thermal Biology, 2005, vol. 30, pp. 163—171. DOI: 10.1016/j.jtherbio.2004.10.002.
61. Tolonen K. T., Hämäläinen H., Holopainen I. J., Mikkonen K., Karjalainen J. Body size and substrate association of littoral insects in relation to vegetation structure. Hydrobiologia, 2003, vol. 499, pp. 179—190. DOI: 10.1023/A:1026325432000.
62. Turner A. M., Chislock M. F. Dragonfly predators influence biomass and density of pond snail. Oecologia, 2007, vol. 153, pp. 407—415. DOI: 10.1007/s00442-007-0736-9.
63. Vinarski M. V., Kantor Yu. I. Analytical catalogue of fresh and brackish water molluscs of Russia and adjacent countries. Moscow, A. N. Severtsov Institute of Ecology and Evolution of RAS, 2016. 544 p.
64. Virbickas T., Pliūraité V., Kesminas V. Impact of agricultural land use on macroinvertebrate fauna in Lithuania. Polish Journal of Environmental Studies, 2011, vol. 20, pp. 1327—1334.
65. Warfe D. M., Barmuta L. A. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia, 2006, vol. 150, pp. 141—154. DOI: 10.1007/s00442-006-0505-1.
66. Williams P., Whitfield M., Biggs J., Bray S., Foxa G., Nicolet P., Sear D. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation, 2003, vol. 115, pp. 329—341. DOI: 10.1016/S0006-3207(03)00153-8.
67. Young J. O. A laboratory study, using 45Ca tracer, on the source of calcium during growth in two freshwater species of gastropoda. Journal of Molluscan Studies, 1975, vol. 41, pp. 439—445.
68. Zbikowska E. The effect of digenea larvae on calcium content in the shells of Lymnaea stagnalis (L.) individuals. Journal of Parasitology, 2003, vol. 89, pp. 76—79. DOI: 10.1645/0022-3395(2003)089[0076:TEODLO]2.0.CO;2.
69. Zuykov M., Vinarski M., Pelletier E., Demers S., Harper D. Shell malformations in seven species of pond snail (Gastropoda, Lymnaeidae): analysis of large museum collections. Zoosystematics and Evolution, 2012, vol. 88, no. 2, pp. 365—368. DOI: 10.1002/zoos.201200025.
Bibliography link to this article:
Mikhailov R. A. Distribution of the pulmonata mollusc Lymnaea (Lymnaea) stagnalis (Mollusca: Gastropoda) in the Samara River (The Saratov Reservoir basin). Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal, 2020, no. 4 (36), pp. 169—183. DOI: https://doi.org/10.32516/2303-9922.2020.36.8.