Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal. 2021. № 2(38). P. 1—14



UDC 582.623.2:581.14:57.034

Afonin Aleksey Alekseyevich, Doctor of Agricultural Sciences
Bryansk State Academician I. G. Petrovski University




The article examines the influence of non-genetic factors on the seasonal dynamics of the development of annual shoots of almond willow (Salix triandra L.). The observations were carried out on saplings of the model population of S. triandra for two seasons (2019 and 2020). The origin of 2019 saplings is three-year-old from seed. The origin of 2020 saplings is one-year-old from cuttings. The general patterns of shoot development are revealed. The seasonal dynamics of shoot growth is described by logistic curves. The seasonal dynamics of daily increment is determined by the interaction of linear trends and nonlinear components. The linear trends are characterized by negative dynamics. The nonlinear dynamics of daily increment is determined by the interaction of subannual and infradian biorhythms. Individual, intra-crown and inter-clonal differences between shoots do not significantly affect the seasonal dynamics of daily growth. Probably, the general patterns of seasonal dynamics of daily growth are determined by the gene pool of the model population. Interannual differences in the dynamics of shoot development were revealed. The growth of shoots in 2019 began 8 days earlier than in 2020. The frequency of subannual biorhythms in 2019 comprised 64 days, in 2020 — 36 days. The frequency of infraredian biorhythms in 2019 were 32 and 18 days, in 2020 — 24 and 9—12 days. The commonality of the gene pools used for observations in different years suggests that interannual differences in the rhythms of daily increment are due to epigenetic variability. The most likely factor determining interannual differences in the seasonal dynamics of shoot development is the age of root systems.

Key words

Almond willow, Salix triandra, annual shoots, daily increment, seasonal dynamics, developmental trajectories, subannual biorhythms, infradian biorhythms, interannual variability, epigenetic variability.


The full text of the article PDF (Russian)



1. Afonin A. A. Sezonnaya dinamika razvitiya pobegov vysokoproduktivnykh vidov iv v kontrastnykh gidrotermicheskikh usloviyakh [Seasonal dynamics of the development of shoots of highly productive willow species in contrasting hydrothermal condition]. Bryansk, RISO BGU Publ., 2020. 168 p. (In Russian)
2. Ezhov S. N. Osnovnye kontseptsii bioritmologii [Basic concepts of biorhythmology]. Vestnik Tikhookeanskogo gosudarstvennogo ekonomicheskogo universiteta, 2008, no. 2 (46), pp. 104—121. (In Russian)
3. Epanchintseva O. V., Tishkina E. A., Mishchikhina Yu. D. Dinamika prirosta iv pri ispol’zovanii razlichnykh agrotekhnicheskikh priemov [The growth dynamics of willows due to the use of various agricultural techniques]. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta — Izvestia Orenburg State Agrarian University, 2020, no. 4 (84), pp. 97—103. DOI: 10.37670/2073-0853-2020-84-4-97-103. (In Russian)
4. Ozernyuk N. D. Raznoobrazie ontogenezov: ierarkhiya mekhanizmov [Diversity of ontogenesis: Hierarchy of mechanisms]. Ontogenez — Russian Journal of Developmental Biology “Ontogenez”, 2010, vol. 41, no. 5, pp. 323—324. (In Russian)
5. Petrov D. F. Geneticheski reguliruemyi apomiksis [Genetically regulated apomixis]. Novosibirsk, Nauka Publ., 1964. 189 p. (In Russian)
6. Sannikova E. G., Popova O. I., Kompantseva E. V. Iva trekhtychinkovaya (Salix triandra L.) — perspektivy i vozmozhnosti ispol’zovaniya v meditsine i farmatsii [Willow triandra (Salix triandra L.): prospects and opportunities for use in medicine and pharmacy]. Farmatsiya i farmakologiya — Pharmacy & Pharmacology, 2018, no. 6 (4), pp. 318—339. DOI: 10.19163/2307-9266-2018-6-4-318-339. (In Russian)
7. Skvortsov A. K. Ivy SSSR: sistematicheskii i geograficheskii obzor [Willows of the Soviet Union: Taxonomic and Geographic Review]. Moscow, Nauka Publ., 1968. 262 p. (In Russian)
8. Starova N. V. Selektsiya ivovykh [Selection of willow family]. Moscow, Lesnaya promyshlennost’ Publ., 1980. 208 p. (In Russian)
9. Sukhanova L. V. Razmnozhenie nektaroproduktivnoi ivy trekhtychinkovoi cherenkami [Reproduction of nectar-producing almond willow by cuttings]. Izvestiya vysshikh uchebnykh zavedenii. Lesnoi zhurnal — Russian Forestry Journal. Bulletin of Higher Educational Institutions, 2004, no. 4, pp. 16—22. (In Russian)
10. Barkalov V. Yu., Kozyrenko M. M. Phylogenetic relationships of Salix L. subg. Salix species (Salicaceae) according to sequencing data of intergenic spacers of the chloroplast genome and ITS rDNA. Russian Journal of Genetics, 2014, vol. 50, no. 8, pp. 828—837. DOI: 10.1134/S1022795414070035.
11. Berlin S., Trybush S.O., Fogelqvist J., Gyllenstrand N., Hallingbäck H. R., Åhman I., Nordh N-E., Shield I., Powers S. J., Weih M., Lagercrantz U., Rönnberg-Wästljung A.-C., Karp A., Hanley S. J. Genetic diversity, population structure and phenotypic variation in European Salix viminalis L. (Salicaceae). Tree Genetics & Genomes, 2014, vol. 10, no. 6, pp. 1595—1610. DOI: 10.1007/s11295-014-0782-5.
12. Critchfield W. B. Leaf dimorphism in Populus trichocarpa. American Journal of Botany, 1960, vol. 47, pp. 699—711. DOI: 10.1002/j.1537-2197.1960.tb07154.x.
13. Cronk Q. C., Needham I., Rudall P. J. Evolution of Catkins: Inflorescence Morphology of Selected Salicaceae in an Evolutionary and Developmental Context. Frontiers in Plant Science, 2015, vol. 6, art. 1030. DOI: 10.3389/fpls.2015.01030.
14. Fabio E. S., Volk T. A., Miller R. O., Serapiglia M. J., Kemanian A. R., Montes F., Kuzovkina Yu. A., Kling G. J., Smart L. B. Contributions of environment and genotype to variation in shrub willow biomass composition. Industrial Crops and Products, 2017, vol. 108, pp. 149—161. DOI: 10.1016/j.indcrop.2017.06.030.
15. Fredette C., Labrecque M., Comeau Y., Brisson J. Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix. Journal of Environmental Management, 2019, vol. 246, pp. 526—537. DOI: 10.1016/j.jenvman.2019.06.010.
16. Fuchylo Ya. D., Afonin A. A., Sbytna M. V. Selection bases of developing new varieties of willow family (Salicaceae Mirb.) to create energy plantations. Plant Varieties Studying and Protection, 2016, no. 4 (33), pp. 18—25. DOI: 10.21498/2518-1017.4(33).2016.88607 [In Ukrainian]
17. Ghelardini L., Berlin S., Weih M., Lagercrantz U., Gyllenstrand N., Rönnberg-Wästljung A. C. Genetic architecture of spring and autumn phenology in Salix. BMC Plant Biology, 2014, vol. 14 (1). A.n. 31. DOI: 10.1186/1471-2229-14-31.
18. Hallingbäck H., Fogelqvist J., Powers S., Turrion‐Gomez J., Rossiter R., Amey J., Martin T., Weih M., Gyllenstrand N., Karp A., Lagercrantz U., Hanley S. J., Berlin S., Rönnberg‐Wästljung A. C. Association mapping in Salix viminalis L. (Salicaceae) — identification of candidate genes associated with growth and phenology. Global Change Biology Bioenergy, 2015, vol. 8 (3), pp. 670—685. DOI: 10.1111/gcbb.12280.
19. Hanley S. J., Karp A. Genetic strategies for dissecting complex traits in biomass willows (Salix spp.). Tree Physiology, 2014, vol. 34 (11), pp. 1167—1180. DOI: 10.1093/treephys/tpt089.
20. Junttila O. Apical Growth Cessation and Shoot Tip Abscission in Salix. Physiologia Plantarum, 1976, vol. 38 (4), pp. 278—286. DOI: 10.1111/j.1399-3054.1976.tb04004.x.
21. Kuzovkina Yu. A. Compilation of the checklist for cultivars of Salix L. (Willow). HortScience, 2015, vol. 50 (11), pp. 1608—1609. DOI: 10.21273/HORTSCI.50.11.1608.
22. Li W., Wu H., Li X., Chen Y. Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix. Horticulture Research, 2020, vol. 7, art. 64. DOI: 10.1038/s41438-020-0289-1.
23. Lüttge U., Hertel B. Diurnal and annual rhythms in trees. Trees, 2009, vol. 23, art. 683. DOI: 10.1007/s00468-009-0324-1.
24. McIvor I., Desrochers V. Tree willow root growth in sediments varying in texture. Forests, 2019, vol. 10, art. 517. DOI: 10.3390/f10060517.
25. Mikhalevskaya O. B. Growth rhythms at different stages of shoot morphogenesis in woody plants. Russian Journal of Developmental Biology, 2008, vol. 39, no. 2, pp. 65—72. DOI: 10.1134/S106236040802001X.
26. Noleto-Dias C., Wu Y., Bellisai A., Macalpine W., Beale M. H., Ward J. L. Phenylalkanoid Glycosides (Non-Salicinoids) from Wood Chips of Salix triandra × dasyclados Hybrid Willow. Molecules, 2019, vol. 24, no. 6, art. 1152. DOI: 10.3390/molecules24061152.
27. Rogers E. R., Zalesny R. S., Hallett R. A., Headlee W. L., Wiese A. H. Relationships among root-shoot ratio, early growth, and health of hybrid poplar and willow clones grown in different landfill soils. Forests, 2019, vol. 10, no. 1, art. 49. DOI: 10.3390/f10010049.
28. Sitzia T., Barcaccia G., Lucchin M. Genetic diversity and stand structure of neighboring white willow (Salix alba L.) populations along fragmented riparian corridors: A case study. Silvae Genetica, 2018, vol. 67, no. 1, pp. 79–88. DOI: 10.2478/sg-2018-0011.
29. Stolarski M. J., Niksa D., Krzyżaniak M., Tworkowski J., Szczukowski S. Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017. Renewable and Sustainable Energy Reviews, 2019, vol. 101, pp. 461—475. DOI: 10.1016/j.rser.2018.11.034.
30. Tumminello G., Volk T. A., McArt S. H., Fierke M. K. Maximizing pollinator diversity in willow biomass plantings: A comparison between willow sexes and among pedigrees. Biomass and Bioenergy, 2018, vol. 117, pp. 124—130. DOI: 10.1016/j.biombioe.2018.07.013.
31. Weih M., Nordh N.-E., Manzoni S., Hoeber S. Functional traits of individual varieties as determinants of growth and nitrogen use patterns in mixed stands of willow (Salix spp.). Forest Ecology and Management, 2021, vol. 479, art. 118605. DOI: 10.1016/j.foreco.2020.118605.
32. Welc M., Lundkvist A., Verwijst T. Effects of cutting phenology (non-dormant versus dormant) on early growth performance of three willow clones grown under different weed treatments and planting dates. BioEnergy Research, 2017, vol. 10, pp. 1094—1104. DOI: 10.1007/s12155-017-9871-2.
33. Wu D., Wang Y., Zhang L., Dou L., Gao L. The complete chloroplast genome and phylogenetic analysis of Salix triandra from China. Mitochondrial DNA Part B, 2019, vol. 4, no. 2, pp. 3571—3572. DOI: 10.1080/23802359.2019.1674743.
34. Zhao F., Yang W. Review on application of willows (Salix spp.) in remediation of contaminated environment. Acta Agriculturae Zhejiangensis, 2017, vol. 29, no. 2, pp. 300—306. DOI: 10.3969/j.issn.1004-1524.2017.02.17.


Bibliography link to this article:

Afonin A. A. Epigenetic variability of the structure of seasonal dynamics of shoot development of almond willow (Salix triandra, Salicaceae). Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal, 2021, no. 2 (38), pp. 1—14. DOI: