The effect of essential oils on the hyphal growth of the causative agent of rhizopus rot of strawberry fruit Rhizopus stolonifera
Ivan P. Muchkin, Postgraduate Student
Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia, vinni2427@gmail.com, https://orcid.org/0009-0002-5526-2019
Sergey V. Khizhnyak, Doctor of Biological Sciences, Associate Professor
Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia, skhizhnyak@yandex.ru, https://orcid.org/0000-0003-2583-8857
Elena Ya. Muchkina, Doctor of Biological Sciences, Professor
Siberian Federal University, Krasnoyarsk, Russia, emuchkina@yandex.ru, https://orcid.org/0000-0003-4572-5585
Abstract
The article studies the influence of volatile components of essential oils of Abies sibirica, Pinus sibirica, Pinus sylvestris, Juniperus communis, Eucalyptus globulus, Citrus limon, Citrus × sinensis and Thymus vulgaris on the hyphal growth of the causative agent of rhizopus rot of strawberry fruit Rhizopus stolonifer. It was found that essential oils of A. sibirica, Citrus × sinensis, T. vulgaris, E. globulus, Citrus limon, P. sibirica and P. sylvestris significantly reduce the growth of hyphae statistically by 81.5, 79.9, 67.7, 50.5, 48.8, 48.6 and 27.5%, respectively. J. communis essential oil had no effect on hyphal growth. Despite the decrease in the average length of hyphae, certain variants with essential oils of P. sylvestris and C. limon, were found to contain some individual spores, on which these oils had not an inhibitory, but a stimulating effect. The same spores were found in the variant with J. communis essential oil. Along with a decrease in hyphal growth, essential oils of E. globulus, J. communis, P. sylvestris and C. limon increase the coefficient of variation in hyphal length by 20.4, 47.4, 113.1 and 346.0%, respectively. In addition, essential oils of T. vulgaris, E. globulus, J. communis, P. sylvestris and C. limon increase the hyphal length oscillation coefficient by 21.3, 39.4, 57.6, 217.1 and 568.4%, respectively. Essential oils of P. sibirica and A. sibirica reduced the coefficients of variation and oscillation of hyphal length. Thus, A. sibirica, Citrus × sinensis and T. vulgaris essential oils as a natural remedy against R. stolonifer are recommended for further study.
Muchkin I. P., Khizhnyak S. V., Muchkina E. Ya. The effect of essential oils on the hyphal growth of the causative agent of rhizopus rot of strawberry fruit Rhizopus stolonifera. Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal, 2024, no. 1 (49), pp. 71—81. DOI: https://doi.org/10.32516/2303-9922.2024.49.6.
1. Ignatov A. N., Koshkin E. I., Andreeva I. V., Guseinov G. G., Guseinov K. G., Dzhalilov F. S.-U. Vliyanie global’nykh izmenenii klimata na fitopatogeny i razvitie boleznei rastenii [Impact of Global Climate Change on Plant Pathogens Occurrence]. Agrokhimiya, 2020, no. 12, pp. 81—96. DOI: 10.31857/S0002188120120042. (In Russian)
2. Kashchits Yu. P. Vidovoi sostav fitopatogennykh mikromitsetov list’ev i yagod zemlyaniki sadovoi v Krasnodarskom krae i Respublike Adygeya [Species composition of phytopathogenic micromycetes of leaves and berries of garden strawberry in Krasnodar region and the Republic of Adygeya]. Byulleten’ Gosudarstvennogo Nikitskogo botanicheskogo sada — Bulletin of the State Nikitsky Botanical Gardens, 2020, is. 137, pp. 23—28. DOI: 10.36305/0513-1634-2020-137-23-28. (In Russian)
3. Kostin N. K., Kuznetsova A. A., Kopina M. B., Beloshapkina O. O. Kul’tural’no-morfologicheskie osobennosti vidov Fusarium oxysporum i Fusarium brachygibbosum, assotsiirovannykh s rasteniyami zemlyaniki sadovoi [Cultural and morphological features of Fusarium oxysporum and Fusarium brachygibbosum species associated with garden strawberry plants]. Plodovodstvo i yagodovodstvo Rossii — Pomiculture and Small Fruits Culture in Russia, 2022, no. 71, pp. 69—81. DOI: 10.31676/2073-4948-2022-71-69-81. (In Russian)
4. Kurkina Yu. N. Fitontsidnoe deistvie efirnykh masel lekarstvennykh rastenii na vozbuditelei al’ternarioza i kladosporioza ovoshchnykh bobov [Phytoncide action of essential oils of medicinal plants on the causative agents of broad beans alternariosis and cladosporiosis]. Ovoshchi Rossii — Vegetable Crops of Russia, 2020, no. 3, pp. 73—76. DOI: 10.18619/2072-9146-2020-3-73-76. (In Russian)
5. Tarakanov V. V., Chindyaeva L. N., Tsybulya N. V., Tikhonova I. V. Izmenchivost’ antimikrobnoi aktivnosti khvoi na klonovoi plantatsii Pinus sylvestris L. [Variability of Needle Antimicrobic Activity in Clone Plantation of Scots Pine Pinus sylvestris L.]. Sibirskii lesnoi zhurnal — Siberian Journal of Forest Science, 2017, no. 1, pp. 95—104. (In Russian)
6. Fitsev I. M., Nikitin E. N., Rakhmaeva A. M., Terenzhev D. A., Sakhno T. M., Nasybullina Zh. R. Khimicheskii sostav efirnykh masel Cupressus sempervirens L. i Thuja occidentalis L. i ikh aktivnost’ v otnoshenii fitopatogennykh gribov [Chemical Composition of Cupressus sempervirens L. and Thuja occidentalis L. Essential Oils and Their Activity against Phytopathogenic Fungi]. Uchenye zapiski Kazanskogo universiteta. Ser. Estestvennye nauki — Proceedings of Kazan University. Natural Sciences Series, 2022, vol. 164, book 3, pp. 392—407. DOI: 10.26907/2542-064X.2022.3.392-407. (In Russian)
7. Khizhnyak S. V., Es’kova E. N. Antigribnaya aktivnost’ vytyazhek list’ev brusniki v otnoshenii vozbuditelya gnili zemlyaniki Rhizopus stolonifer [Lingonberry extracting leaves antifungal activity against the strawberry Rot agent Rhizopus stolonifer]. Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta, 2021, no. 11, pp. 53—60. DOI: 10.36718/1819-4036-2021-11-53-60. (In Russian)
8. Kholod N. A. Bolezni zemlyaniki na yuge Rossii [Diseases of strawberry in the South of Russia]. Zashchita i karantin rastenii, 2013, no. 10, pp. 28—30. (In Russian)
9. Kholod N. A. Nematodno-mikoznye infektsii rizosfery zemlyaniki sadovoi v Yuzhnom regione Rossii [Nematode-mikosis infections of strawberry rhizosphere in the Southern region of Russia]. Plodovodstvo i vinogradarstvo Yuga Rossii — Fruit Growing and Viticulture of South Russia, 2017, no. 44 (02), pp. 1—13. Available at: http://journalkubansad.ru/pdf/17/02/05.pdf. (In Russian)
10. Kholod N. A. Optimizatsiya primeneniya mikrobiologicheskikh preparatov dlya upravleniya patosistemami v agrotsenoze zemlyaniki [Optimization of application of microbiological preparations for pathos systems management at the strawberry’s agric cenosis]. Plodovodstvo i vinogradarstvo Yuga Rossii — Fruit Growing and Viticulture of South Russia, 2014, no. 29 (05), pp. 1—12. (In Russian)
11. Tsybulya N. V., Fershalova T. D. Sezonnaya antimikrobnaya aktivnost’ letuchikh vydelenii predstavitelei roda Begonia L. (Begoniaceae) [Seasonal antimicrobial activity of volatile substances emitted by the representatives of Begonia L. genus (Begoniaceae)]. Samarskii nauchnyi vestnik — Samara Journal of Science, 2021, vol. 10, no. 1, pp. 167—172. DOI: 10.17816/snv2021101126. (In Russian)
12. Chindyaeva L. N., Tsybulya N. V., Yakimova Yu. L. Sezonnaya dinamika antimikrobnoi aktivnosti vidov semeistva klenovye (Aceraceae Juss.) [Seasonal dynamics of antimicrobic activity of Aceraceae Juss. species]. Vestnik Novosibirskogo gosudarstvennogo universiteta. Ser. Biologiya, klinicheskaya meditsina — Vestnik Novosibirsk State University. Ser. Biology, Clinical Medicine, 2011, vol. 9, is. 3, pp. 55—59. (In Russian)
13. Baggio J. S., Hau B., Amorim L. Spatiotemporal analyses of rhizopus rot progress in peach fruit inoculated with Rhizopus stolonifer. Plant Pathology, 2017, vol. 66, pp. 1452—1462. DOI: 10.1111/ppa.12691.
14. Bautista-Baños S., Bosquez-Molina E., Barrera-Necha L. L. Rhizopus stolonifer (Soft Rot). Bautista-Baños S. (ed.). Postharvest decay: Control strategies. Elsevier, 2014, pp. 1—44. DOI: 10.1016/B978-0-12-411552-1.00001-6.
15. De Corato U., Salimbeni R., De Pretis A. Evaluation of an alternative mean for controlling postharvest Rhizopus rot of strawberries. Advances in Horticultural Science, 2018, vol. 32, no. 3, pp. 325—334. DOI: 10.13128/ahs-21886.
16. Feliziani E., Romanazzi G. Postharvest Decay of Strawberry Fruit: Etiology, Epidemiology, and Disease Management. Journal of Berry Research, 2016, vol. 6, no. 1, pp. 47—63. DOI: 10.3233/JBR-150113.
17. Lin C. P., Tsai J. N., Ann P. J., Chang J. T., Chen P. R. First report of rhizopus rot of strawberry fruit caused by Rhizopus stolonifer in Taiwan. Plant Disease, 2017, vol. 101, no. 1, pp. 254. DOI: 10.1094/PDIS-07-16-1033-PDN.
18. Oliveira Filho J. G., Silva G. da Cruz, Egea M. B., Azeredo H. M. C., Ferreira M. D. Essential Oils as Natural Fungicides to Control Rhizopus stolonifer-Induced Spoiled of Strawberries. Biointerface Research in Applied Chemistry, 2021, vol. 11, no. 5, pp. 13244—13251. DOI: 10.33263/BRIAC115.1324413251.
19. Oliveira J., Parisi M. C. M., Baggio J. S., Silva P. P. M., Paviani B., Spoto M. H. F., Gloria E. M. Control of Rhizopus stolonifer in strawberries by the combination of essential oil with carboxymethylcellulose. International Journal of Food Microbiology, 2019, vol. 292, pp. 150—158. DOI: 10.1016/j.ijfoodmicro.2018.12.014.
20. Yarahmadi M., Safaei Z., Azizi M. Study the effect of chitosan, vanillin, and acetic acid on fungal disease control of Rhizopus stolonifer in strawberry fruits in vitro and in vivo. European Journal of Experimental Biology, 2014, vol. 4, is. 3, pp. 219—225.