Mycobiota of pine bark in pine forests of Surgut and Surgut district with varying degrees of anthropogenic load
Maria V. Mantrova, Junior Researcher of Scientific and Educational Center of Institute of Natural and Technical Sciences
Surgut State University, Surgut, Russia, mantrova-mariya@yandex.ru, https://orcid.org/0000-0002-7352-787X
Abstract
The article is devoted to the study of complexes of microscopic fungi of pine bark in pine forests and parks of the city of Surgut and control areas of the Surgut district. The mycobiota contains 41 strains of microscopic fungi belonging to 11 species, 7 genera: Daldinia Ces. & De Not., Fusarium Link, Mucor Fresen., Neurospora Shear & B. O. Dodge, Penicillium Link, Trichoderma Pers., Rhizopus Ehrenb.; representatives of the Mycelia sterilia group with light and dark-colored mycelium were also identified. The complexes of micromycetes of the pine bark of all studied territories are dominated by T. harzianum Rifai and N. dictyophora (R. S. Khan & J. C. Krug) Dania García, Stchigel & Guarro, and M. plumbeus Bonord in the pine forests of the parks. In the mycocenosis of the pine bark of the “Za Saima” park, a potential pathogen of coniferous trees F. sporotrichioides Sherb. was found among the dominants, which may indicate some phytosanitary problems of this phytocenosis. In general, saprotrophic microscopic fungi predominate in the structure of the complexes of micromycetes of the pine bark in the studied forest parks and control territories, which indicate a favorable ecological condition of these sites. A small number of species in the pine bark micromycete complexes of the studied territories correlates with the results of the previous studies of the mycobiota of the soil litter of the same sites. According to the results of cluster analysis, complexes of micromycetes of pine bark are grouped into three blocks by similarity of species composition — micromycetes of park-zone pine bark, those of control areas and those of control pine forest beyond the Malaya Kucheminskaya River. Presumably, this distribution is due to the influence of an anthropogenic factor affecting biota in general and mycobiota in particular. Anthropogenic influence is more pronounced in parks due to the recreational areas located there, while it is less pronounced in the pine forests of control areas, near which garbage dumps are found, and people can visit these forests to gather berries and mushrooms. The minimum anthropogenic load was established in the control pine forest beyond the Malaya Kucheminskaya River due to the remoteness of this site from the road and the absence of landfills, but the possibility of people visiting this forest is not excluded. It is relevant to continue research on complexes of epiphytic micromycetes not only of the bark, but also pine needles, as well as endophytic micromycetes of the same habitats with further study of the soil mycobiota of pine forests in order to make a comprehensive ecology assessment of these territories in dynamics.
Key words
Complexes of micromycetes of pine bark, saprotrophic microscopic fungi, phytopathogenic micromycetes, conditionally pathogenic microscopic fungi, pine forest, anthropogenic factor.
Acknowledgments: The author expresses gratitude to Doctor of Biological Sciences, a leading researcher of the Department of Mycology and Algology of Moscow State University Alina Vitalyevna Aleksandrova for comprehensive assistance in conducting mycological studies and species identification of microscopic fungi, as well as to the graduate student of the Department Evgeny Andreevich Antonov for assistance in conducting molecular research. The work was carried out with the financial support of the Department of Education and Science of the Khanty-Mansiysk Autonomous Okrug — Yugra (Order No. 10-P-1534), as part of the state assignment for project No. 2023-227-03
For citation:
Mantrova M. V. Mycobiota of pine bark in pine forests of Surgut and Surgut district with varying degrees of anthropogenic load. Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal, 2024, no. 4 (52), pp. 6—25. DOI: https://doi.org/10.32516/2303-9922.2024.52.1.
1. Aleksandrova A. V. Pochvoobitayushchie mikroskopicheskie griby: geografiya i ekologiya: avtoref. dis. … d-ra biol. nauk [Soil-dwelling microscopic fungi: geography and ecology. Abstr. Dr. Dis.]. Moscow, 2013. 51 p. (In Russian)
2. Aleksandrova A. V., Velikanov L. L., Sidorova I. I. Klyuch dlya opredeleniya vidov roda Trichoderma [Key to the species of the genus Trichoderma]. Mikologiya i fitopatologiya — Mycology and Phytopathology, 2006, vol. 40, iss. 6, pp. 457—468. (In Russian)
3. Alimova F. K. Promyshlennoe primenenie gribov roda Trichoderma [Industrial applications of fungi of genus Trichoderma]. Kazan, Kazan. gos. un-t im. V. I. Ul’yanova-Lenina Publ., 2006. 209 p. (In Russian)
4. Bakaeva M. D., Klimina I. P., Kireeva N. A., Dubovik I. E. Vliyanie uslovii gorodskoi ekosistemy na aerofil’nye mikroskopicheskie griby drevesnoi kory [The effect of urban ecosystem conditions on aerophilic microscopic fungi of tree bark]. Vestnik Orenburgskogo gosudarstvennogo universiteta — Vestnik of the Orenburg State University, 2010, no. 2 (108), pp. 111—113. (In Russian)
5. Blagoveshchenskaya E. Yu. Metody vyyavleniya gribov filloplany [Methods for identifying phylloplane fungi]. Bioticheskie svyazi gribov: mosty mezhdu tsarstvami: materialy VII Vseros. mikologicheskoi shkoly-konferentsii s mezhdunar. uchastiem. 2—8 avgusta 2015 g., Moskva [Biotic connections of fungi. Bridges between kingdoms. Proceed. of the VII All-Russia mycological school-conference with internat. participation. Aug. 2—8, 2015, Moscow]. Moscow, ZBS MGU Publ., 2015, pp. 5—9. (In Russian)
6. Bondar’ P. N. Shtammy gribov roda Trichoderma (Pers.: Fr.) kak osnova dlya sozdaniya biopreparatov zashchity rastenii i polucheniya kormovykh dobavok: avtoref. dis. … kand. biol. nauk [Strains of fungi of genus Trichoderma (Pers.: Fr.) as a basis for creating biopreparations for plant protection and obtaining feed additives. Abstr. Cand. Dis.]. Moscow, 2011. 22 p. (In Russian)
7. Velikanov L. L., Sidorova I. I., Uspenskaya G. D. Polevaya praktika po ekologii gribov i lishainikov [Field practice in the ecology of fungi and lichens]. Moscow, Mosk. un-t Publ., 1980. 112 p. (In Russian)
8. Gromovykh T. I. Fitopatogennye mikromitsety seyantsev khvoinykh v Srednei Sibiri: Vidovoi sostav, ekologiya, biologicheskii kontrol’: dis. … d-ra biol. nauk [Phytopathogenic micromycetes of conifer seedlings in Central Siberia. Species composition, ecology, biological control. Dr. Dis.]. Krasnoyarsk, 2002. 362 p. (In Russian)
9. Gromovykh T. I., Sadykova V. S., Alimova F. K. Mikromitsety roda Trichoderma Pers.: Nauchnoe obosnovanie ispol’zovaniya v tekhnologiyakh agropromyshlennogo kompleksa [Micromycetes of genus Trichoderma Pers.: Scientific substantiation of use in agro-industrial technologies]. Moscow, MGUPP Publ., 2014. 189 p. (In Russian)
10. Zelenskaya M. S., Sidel’nikova M. V., Panova E. G., Pautov A. A., Krylova E. G., Pagoda Ya. O., Vlasov D. Yu. Griby filloplany v gorodskoi srede [Phylloplane fungi in the urban environment]. Biosfera, 2017, vol. 9, no. 2, pp. 136—151. DOI: 10.24855/BIOSFERA.V912.353. (In Russian)
11. Kanevskaya I. G. Biologicheskoe povrezhdenie promyshlennykh materialov [Biological damage of industrial materials]. Leningrad, Nauka Publ., 1984. 232 p. (In Russian)
12. Lotova L. I. Mikrostruktura kory osnovnykh lesoobrazuyushchikh listvennykh derev’ev i kustarnikov Vostochnoi Evropy [Microstructure of bark of main forest-forming deciduous trees and shrubs of Eastern Europe]. Moscow, KMK Publ., 1998. 113 p. (In Russian)
13. Lugauskas A. Yu., Mikul’skene A. I., Shlyauzhene D. Yu. Katalog mikromitsetov — biodestruktorov polimernykh materialov [Catalog of micromycetes — biodestructors of polymeric materials]. Moscow, Nauka Publ., 1987. 340 p. (In Russian)
14. Mantrova M. V. Mikobiota verkhnego sloya podstilki sosnyakov parkov g. Surguta v ekologicheskoi otsenke antropogennogo vliyaniya na dannye territorii [Mycobiota of the upper layer of pine forests litter in the parks of Surgut in the environmental assessment of anthropogenic impact on these territories]. Samarskii nauchnyi vestnik — Samara Journal of Science, 2021, vol. 10, no. 2, pp. 66—77. DOI: 10.17816/snv2021102109. (In Russian)
15. Mantrova M. V. Pochvennaya mikobiota sosnyaka parka “Za Saimoi” g. Surguta [Soil mycobiota of the pine forest of the park “Za Saimoi” in Surgut]. Bezopasnyi Sever — chistaya Arktika: sb. materialov V Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem [Safe North — Clean Arctic. Proceed. of the V All-Russia sci.-pract. conf. with internat. participation]. Surgut, SurGU Publ., 2023, pp. 179—182. (In Russian)
16. Mantrova M. V. Sezonnaya dinamika chislennosti shtammov roda Trichoderma v strukture pochvennykh mikotsenozov sosnyakov parkov goroda Surguta [Seasonal dynamics of the number of strains of genus Trichoderma in the structure of soil mycocenoses of pine forests of the parks of Surgut]. Biologicheskoe raznoobrazie: izuchenie, sokhranenie, vosstanovlenie, ratsional’noe ispol’zovanie: materialy II Mezhdunar. nauch.-prakt. konf. (Kerch, 27—30 maya 2020) [Biological diversity: study, conservation, restoration, rational use. Proceed. of the II Internat. sci.-pract. conf. (Kerch, May 27—30, 2020)]. Simferopol, Arial Publ., 2020, pp. 146—153. (In Russian)
17. Marfenina O. E. Antropogennaya ekologiya pochvennykh gribov [Anthropogenic ecology of soil fungi]. Moscow, Meditsina dlya vsekh Publ., 2005. 196 p. (In Russian)
18. Metody pochvennoi mikrobiologii i biokhimii: ucheb. posobie [Methods of soil microbiology and biochemistry. Textbook]. Moscow, MGU Publ., 1991. 304 p. (In Russian)
19. Dudka I. A. (et al.) Metody eksperimental’noi mikologii: spravochnik [Methods of experimental mycology. Handbook]. Kiev, Naukova dumka Publ., 1982. 550 p. (In Russian)
20. Mikromitsety pochv [Soil micromycetes]. Kiev, Naukova dumka Publ., 1984. 264 p. (In Russian)
21. Mil’ko A. A. Opredelitel’ mukoral’nykh gribov [Key of mucoral fungi]. Kiev, Naukova dumka Publ., 1974. 304 p. (In Russian)
22. Mirchink T. G. Pochvennaya mikologiya: ucheb. [Soil mycology. Textbook]. Moscow, MGU Publ., 1988. 220 p. (In Russian)
23. Neverova O. A., Tsandekova O. L. Izuchenie terpenovoi fraktsii efirnogo masla khvoi sosny obyknovennoi (Pinus sylvestris L.), proizrastayushchei v usloviyakh porodnogo otvala Kedrovskogo ugol’nogo razreza [Research terpene fraction of essential oil of needles of scots pine (Pinus sylvestris L.), growing under waste dump Kedrovsky coal cut]. Khimiya rastitel’nogo syr’ya — Chemistry of Plant Raw Material, 2017, no. 2, pp. 101—106. DOI: 10.14258/jcprm.2017021571. (In Russian)
24. Ovchinnikova T. A., Krems E. V., Korchikov E. S. Sezonnaya dinamika mikobioty listovoi poverkhnosti drevesnykh rastenii gorodskoi sredy [Seasonal dynamics of mycobiota of leaf surface of woody plants in urban environments]. Vestnik Samarskogo gosudarstvennogo universiteta — Vestnik of Samara State University, 2013, no. 6 (107), pp. 188—195. (In Russian)
25. Sadykova V. S., Kurakov A. V., Likhachev A. N. Griby roda Trichoderma Srednei Sibiri: vidovoi sostav i ispol’zovanie v biotekhnologii [Fungi of genus Trichoderma of Central Siberia: species composition and use in biotechnology]. Bioraznoobrazie i ekologiya gribov i gribopodobnykh organizmov Severnoi Evrazii: materialy Vseros. konf. s mezhdunar. uchastiem (Ekaterinburg, 20—24 aprelya 2015 g.) [Biodiversity and ecology of fungi and fungus-like organisms of Northern Eurasia. Proceed. of All-Russia conf. with internat. participation (Yekaterinburg, Apr. 20—24, 2015)]. Yekaterinburg, Ural’skii un-t Publ., 2015, pp. 217—219. (In Russian)
26. Satton D., Fotergill A., Rinal’di M. Opredelitel’ patogennykh i uslovno patogennykh gribov: per. s angl. [Key of pathogenic and opportunistic fungi. Trans. from English]. Moscow, Mir Publ., 2001. 486 p. (In Russian)
27. Senashova V. A. Epifitnaya mikroflora i zabolevaniya khvoi u drevesnykh vidov Srednei Sibiri [Epiphytic microflora and diseases of needles in tree species of Central Siberia]. Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta — The Bulletin of KrasGAU, 2009, no. 6, pp. 84—88. (In Russian)
28. Senashova V. A., Gromovykh T. I., Sorokin N. D. Epifitnaya mikroflora zdorovoi i porazhennoi khvoi drevesnykh porod Srednei Sibiri [Epiphytic microflora of sound and damaged needles in woody species of middle Siberia]. Lesovedenie — Russian Journal of Forest Science, 2012, no. 4, pp. 24—30. (In Russian)
29. Smirnov V. F., Kuz’min D. A., Smirnova O. N., Trofimov A. N. Deistvie terpenoidov na fiziologo-biokhimicheskuyu aktivnost’ gribov-destruktorov promyshlennykh materialov [The effect of terpenoids on the physiological and biochemical activity of fungi-destructors of industrial materials]. Khimiya rastitel’nogo syr’ya — Chemistry of Plant Raw Material, 2002, no. 4, pp. 29—33. (In Russian)
30. Tret’yakova I. N., Sadykova V. S., Noskova N. E., Bondar’ P. N., Gaidasheva I. I., Gromovykh T. I., Ivanitskaya A. S., Izhboldina M. V., Barsukova A. V. Roststimuliruyushchaya aktivnost’ shtammov rodov Streptomyces i Trichoderma i perspektivy ikh ispol’zovaniya dlya mikroklonal’nogo razmnozheniya khvoinykh [Growth-stimulating activity of strains of the genera Streptomyces and Trichoderma and prospects for their use for microclonal propagation of conifers]. Biotekhnologiya, 2009, no. 1, pp. 39—44. (In Russian)
31. Ushanova V. M., Zaika N. A., Gromovykh T. I. Al’ternativnye puti ispol’zovaniya kory khvoinykh v razlichnykh tekhnologiyakh [Alternative ways of using coniferous bark in various technologies]. Khimiya i khimicheskaya tekhnologiya, 2006, vol. 49, no. 5, pp. 72—77. (In Russian)
32. Khabibulina F. M., Kuznetsova E. G., Vaseneva I. Z. Mikromitsety podzolistykh pochv v podzone srednei taigi na severo-vostoke evropeiskoi chasti Rossii [Micromycetes in podzolic and bog-podzolic soils in the Middle taiga subzone of Northeastern European Russia]. Pochvovedenie — Eurasian Soil Science, 2014, no. 10, pp. 1228—1234. (In Russian)
33. Tsarelunga A. A., Blagoveshchenskaya E. Yu. Filloplana kak mestoobitanie gribov [Phylloplane as fungi habitat]. Zhurnal obshchei biologii, 2023, vol. 84, no. 4, pp. 263—278. DOI: 10.31857/S0044459623040073. (In Russian)
34. Shepeleva L. F., Shepelev A. I., Samoilenko Z. A. (et al.). Pochvy i rastitel’nost’ tsentral’noi chasti taezhnoi zony Zapadnoi Sibiri (v predelakh Khanty-Mansiiskogo avtonomnogo okruga): ucheb. posobie [Soils and vegetation of the central part of the taiga zone of Western Siberia (within the Khanty-Mansiysk Autonomous Okrug). Textbook]. Surgut, ITs SurGU Publ., 2010. 104 p. (In Russian)
35. Chunbo D., Zhang Z., Shao Q., Yao T., Liang Z., Han Y. Mycobiota of Eucommia ulmoides bark: Diversity, rare biosphere and core taxa. Fungal Ecology, 2021, vol. 53, no. 8, art. 101090. DOI: 10.1016/j.funeco.2021.101090.
36. Davey M. L. Annellosporium nemorosum gen. et sp. nov., an annellidic anamorph with phylogenetic affinities to the genus Daldinia (Xylariales). Karstenia, 2010, vol. 50, no. 1, pp. 1—10. DOI: 10.29203/ka.2010.436.
37. Domsch K. H., Gams W., Anderson T.-H. Compendium of soil Fungi. München, Academic Press, 2007. 672 p.
38. Falconi C. J., Mendgen K. Epiphytic fungi on apple leaves and their value for control of the postharvest pathogens Botrytis cinerea, Monilinia fructigena and Penicillium expansum. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 1994, Bd. 101, Heft 1, S. 38—47.
39. Samson R. A., Houbraken J., Thrane U., Frisvad J. C., Andersen B. Food and Indoor fungi. Utrecht (The Netherlands), CBS-KNAW Fungal Biodiversity Centre, 2010. 390 р.
40. Frisvad J. C., Samson R. A. Penicillium subgenus Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Studies in Mycology, 2004, no. 49, pp. 1—251.
41. Garcia D., Stchigel A. M., Cano J., Guarro J., Hawksworth D. L. A synopsis and re-circumscription of Neurospora (syn. Gelasinospora) based on ultrastructural and 28S rDNA sequence data. Mycological Research, 2004, vol. 108, no. 10, pp. 1119—1142. DOI: 10.1017/S0953756204000218.
42. Gerlach W., Nirenberg H. The Genus Fusarium: a pictorial atlas. Berlin, Hamburg, Parey, 1982. 406 p.
43. Guarro J., Gené J., Stchigel A. M., Figueras M. J. Atlas of Soil Ascomycetes. Utrecht, the Netherlands, 2012. 486 p. (CBS Biodiversity Series. Vol. 10).
44. Hammer Ø., Harper D. A. T. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001, vol. 4, no. 1, pp. 1—9. URL: https://palaeo-electronica.org/2001_1/past/issue1_01.htm.
45. Hudson H. J. The development of the saprophytic flora as leaves senesce and fall. Ecology of leaf surface microtissueisms. Ed. by T. F. Preece and G. H. Dichinson. New York, Academic Press, 1971, pp. 447—455.
46. Index Fungorum. Available at: https://indexfungorum.org. Accessed: 31.07.2024.
47. Kharwar R. N., Gond S. K., Kumar A., Mishra A. A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World Journal Microbiology and Biotechnology, 2010, vol. 26, no. 11, pp. 1941—1948. DOI: 10.1007/s11274-010-0374-y.
48. Leslie J. F., Summerell B. A. The Fusarium Laboratory Manual. Ames (USA), Carlton, (Australia), Blackwell Publishing, 2006. 416 p.
49. Mycobank Database. Fungal Databases, Nomenclature & Species Banks. Available at: https://www.mycobank.org. Accessed: 31.07.2024.
50. Piasai O., Sudsanguan M. Morphological study of Gelasinospora from dung and antagonistic effect against plant pathogenic fungi in vitro. Agriculture and Natural Resources, 2018, vol. 52, pp. 407—411.
51. Stadler M., Laessøe T., Fournieret J. (et al.). A polyphasic taxonomy of Daldinia (Xylariaceae). Studies in Mycology, 2014, vol. 77, pp. 1—143.
52. Wang Y., Guo L.-D. A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Canadian Journal of Botany, 2007, vol. 85, pp. 911—917.