Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal. 2020. № 1 (33). P. 210—229
13.00.00 PEDAGOGIC SCIENCES
UDC 372.851
Klekovkin Gennady Anatolyevich, Candidate of Physical and Mathematical Sciences, Associate Professor
Samara branch of Moscow City Pedagogical University
USING THE GEOGEBRA INTERACTIVE MATH SYSTEM IN TEACHING DIFFERENTIAL GEOMETRY. PARAMETERIZED SURFACES
Abstract
The author continues to study the tools of the GeoGebra Interactive Math System, which may be in demand in teaching differential geometry to future mathematics teachers. Based on the analysis, the possible directions of introducing this system into the educational process when studying surfaces and their properties are highlighted. The article is addressed to teachers of the geometry course.
Key words
GeoGebra Interactive Math System, differential geometry, parameterized surface, teaching geometry.
1. Atanasyan L. S., Bazylev V. T. Geometriya: ucheb. posobie dlya studentov fiz.-mat. fak. ped. in-tov: v 2 ch. [Geometry. A textbook for students of physics and mathematics at pedagogical institutes. In 2 parts]. Part 2. Moscow, Prosveshchenie Publ., 1987. 352 p. (In Russian)
2. Atanasyan L. S., Vasil’eva M. V., Veresova E. E. et al. Sbornik zadach po geometrii: ucheb. posobie dlya stud. fiz.-mat. fak. ped. in-tov [Collection of tasks in geometry. A textbook for students of physics and mathematics at pedagogical institutes]. Moscow, Prosveshchenie Publ., 1980. 238 p. (In Russian)
3. Atanasyan S. L., Sheveleva N. V., Pokrovskii V. G. Sbornik zadach po geometrii: v 2 ch. Ch. 2 [Collection of tasks in geometry. In 2 parts. Part 2]. Moscow, Eksmo Publ., 2008. 320 p. (In Russian)
4. Bazylev V. T., Dunichev K. I., Ivanitskaya V. P. et al. Sbornik zadach po geometrii [Collection of tasks in geometry]. Moscow, Prosveshchenie Publ., 1980. 238 p. (In Russian)
5. Bel’ko I. V., Vedernikov V. I., Vodnev V. T. et al. Sbornik zadach po differentsial’noi geometrii [Collection of tasks in differential geometry]. Moscow, Mir Publ., 1981. 279 p. (In Russian)
6. Bukusheva A. V. Issledovanie krivykh i poverkhnostei v sisteme Mathematica: ucheb. posobie [Study of curves and surfaces in the system “Mathematics”. Textbook]. Saratov, 2014. 55 p. (In Russian)
7. Guseva N. I., Denisova N. S., Teslya O. Yu. Sbornik zadach po geometrii: ucheb. posobie: v 2 ch. Ch. 2 [Collection of tasks in geometry. Textbook. In 2 parts. Part 2]. Moscow, KnoRus Publ., 2018. 528 p. (In Russian)
8. Ignat’ev Yu. G., Samigullina A. R. Sozdanie biblioteki protsedur v differentsial’noi geometrii [Creating a library of procedures in differential geometry]. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya ITO Povolzh’e 2007. Rossiiskii nauchnyi seminar “Metody informatsionnykh tekhnologii, matematicheskogo modelirovaniya i komp'yuternoi matematiki v fundamental’nykh i prikladnykh nauchnykh issledovaniyakh”: materialy konf. i tr. seminara [International Scientific and Practical Conference ITO Volga 2007. Russian scientific seminar “Methods of information technology, mathematical modeling and computer mathematics in fundamental and applied research”. Proceedings of the conference and seminar]. Kazan, Tatarskii gos. gumanit.-ped. un-t, Foliant Publ., 2007, pp. 112—116. (In Russian)
9. Kagan V. F. Osnovy teorii poverkhnostei v tenzornom izlozhenii. Ch. 1 [Fundamentals of surface theory in tensor presentation. Part 1]. Moscow, Leningrad, OGIZ Publ., 1947. 512 p. (In Russian)
10. Kapustina T. V. Programmirovanie opornykh zadach teorii poverkhnostei v srede Mathematica [Programming support problems of surface theory in Mathematics]. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya ITO Povolzh’e 2007. Rossiiskii nauchnyi seminar “Metody informatsionnykh tekhnologii, matematicheskogo modelirovaniya i komp'yuternoi matematiki v fundamental’nykh i prikladnykh nauchnykh issledovaniyakh”: materialy konf. i tr. seminara [International Scientific and Practical Conference ITO Volga 2007. Russian scientific seminar “Methods of information technology, mathematical modeling and computer mathematics in fundamental and applied research”. Proceedings of the conference and seminar]. Kazan, Tatarskii gos. gumanit.-ped. un-t, Foliant Publ., 2007, pp. 381—386. (In Russian)
11. Klekovkin G. A. Ispol’zovanie interaktivnoi matematicheskoi sistemy GeoGebra pri obuchenii differentsial’noi geometrii. Parametrizovannye krivye [Using the GeoGebra interactive mathematical system in teaching differential geometry. Spatial curves]. Vestnik Orenburgskogo gosudarstvennogo pedagogicheskogo universiteta. Elektronnyi nauchnyi zhurnal — Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal, 2019, no. 4 (32), pp. 257—284. Available at: http://vestospu.ru/archive/2019/articles/19_32_2019.pdf. DOI: 10.32516/2303-9922.2019.32.19. (In Russian)
12. Norden A. P. Kratkii kurs differentsial’noi geometrii [Short course of differential geometry]. 2nd ed. Moscow, Fizmatgiz Publ., 1958. 244 p. (In Russian)
13. Rashevskii P. K. Kurs differentsial’noi geometrii [Course in differential geometry]. Moscow, URSS Publ., 2014. 432 p. (In Russian)
14. Rozendorn E. R. Zadachi po differentsial’noi geometrii [Tasks in differential geometry]. Moscow, Fizmatlit Publ., 2001. 352 p. (In Russian)
15. GeoGebra. Available at: http://www.geogebra.org. Accessed: 09.07.2019.
Bibliography link to this article:
Klekovkin G. A. Using the GeoGebra Interactive Math System in teaching differential geometry. Parameterized surfaces. Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal, 2020, no. 1 (33), pp. 210—229. DOI: https://doi.org/10.32516/2303-9922.2020.33.19.